Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
China Journal of Chinese Materia Medica ; (24): 2989-2999, 2023.
Article in Chinese | WPRIM | ID: wpr-981445

ABSTRACT

This study was designed to comprehensively characterize and identify the chemical components in traditional Chinese medicine Psoraleae Fructus by establishing an ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry(UHPLC-Q-TOF-MS) method in combination with in-house library. The chromatographic separation conditions(stationary phase, column temperature, mobile phase, and elution gradient) and key MS monitoring parameters(capillary voltage, nozzle voltage, and fragmentor) were sequentially optimized via single-factor experiments. A BEH C_(18) column(2.1 mm×100 mm, 1.7 μm) was finally adopted, with the mobile phase consisting of 0.1% formic acid in water(A) and acetonitrile(B) at the flow rate of 0.4 mL·min~(-1) and column temperature of 30 ℃. Auto MS/MS was utilized for data acquisition in both positive and negative ion modes. By comparison with reference compounds, analysis of the MS~2 fragments, in-house library retrieval and literature research, 83 compounds were identified or tentatively characterized from Psoraleae Fructus, including 58 flavonoids, 11 coumarins, 4 terpenoid phenols, and 10 others. Sixteen of them were identified by comparison with reference compounds, and ten compounds may have not been reported from Psoraleae Fructus. This study achieved a rapid qualitative analysis on the chemical components in Psoraleae Fructus, which provided useful reference for elucidating its material basis and promoting the quality control.


Subject(s)
Chromatography, High Pressure Liquid , Medicine, Chinese Traditional , Tandem Mass Spectrometry , Cell Cycle , Coumarins
2.
China Journal of Chinese Materia Medica ; (24): 1899-1907, 2023.
Article in Chinese | WPRIM | ID: wpr-981409

ABSTRACT

To study the quality control of three traditional Chinese medicines derived from Gleditsia sinensis [Gleditsiae Sinensis Fructus(GSF), Gleditsiae Fructus Abnormalis(GFA), and Gleditsiae Spina(GS)], this paper established a multiple reaction monitoring(MRM) approach based on ultra-high performance liquid chromatography-triple quadrupole-linear ion-trap mass spectrometry(UHPLC-Q-Trap-MS). Using an ACQUITY UPLC BEH C_(18) column(2.1 mm × 100 mm, 1.7 μm), gradient elution was performed at 40 ℃ with water containing 0.1% formic acid-acetonitrile as the mobile phase running at 0.3 mL·min~(-1), and the separation and content determination of ten chemical constituents(e.g., saikachinoside A, locustoside A, orientin, taxifolin, vitexin, isoquercitrin, luteolin, quercitrin, quercetin, and apigenin) in GSF, GFA, and GS were enabled within 31 min. The established method could quickly and efficiently determine the content of ten chemical constituents in GSF, GFA, and GS. All constituents showed good linearity(r>0.995), and the average recovery rate was 94.09%-110.9%. The results showed that, the content of two alkaloids in GSF(2.03-834.75 μg·g~(-1)) was higher than that in GFA(0.03-10.41 μg·g~(-1)) and GS(0.04-13.66 μg·g~(-1)), while the content of eight flavonoids in GS(0.54-2.38 mg·g~(-1)) was higher than that in GSF(0.08-0.29 mg·g~(-1)) and GFA(0.15-0.32 mg·g~(-1)). These results provide references for the quality control of G. sinensis-derived TCMs.


Subject(s)
Flavonoids/analysis , Alkaloids , Chromatography, High Pressure Liquid/methods , Mass Spectrometry , Drugs, Chinese Herbal
3.
Journal of Pharmaceutical Analysis ; (6): 136-144, 2022.
Article in Chinese | WPRIM | ID: wpr-931240

ABSTRACT

Comprehensive characterization of metabolites and metabolic profiles in plasma has considerable sig-nificance in determining the efficacy and safety of traditional Chinese medicine(TCM)in vivo.However,this process is usually hindered by the insufficient characteristic fragments of metabolites,ubiquitous matrix interference,and complicated screening and identification procedures for metabolites.In this study,an effective strategy was established to systematically characterize the metabolites,deduce the metabolic pathways,and describe the metabolic profiles of bufadienolides isolated from Venenum Bufonis in vivo.The strategy was divided into five steps.First,the blank and test plasma samples were injected into an ultra-high performance liquid chromatography/linear trap quadrupole-orbitrap-mass spectrometry(MS)system in the full scan mode continuously five times to screen for valid matrix compounds and metabolites.Second,an extension-mass defect filter model was established to obtain the targeted precursor ions of the list of bufadienolide metabolites,which reduced approximately 39%of the interfering ions.Third,an acquisition model was developed and used to trigger more tandem MS(MS/MS)fragments of precursor ions based on the targeted ion list.The acquisition mode enhanced the acquisition capability by approximately four times than that of the regular data-dependent acquisition mode.Fourth,the acquired data were imported into Compound Discoverer software for identification of metabolites with metabolic network prediction.The main in vivo metabolic pathways of bufadienolides were elucidated.A total of 147 metabolites were characterized,and the main biotransformation reactions of bufadienolides were hydroxylation,dihydroxylation,and isomerization.Finally,the main prototype bufadienolides in plasma at different time points were determined using LC-MS/MS,and the metabolic profiles were clearly identified.This strategy could be widely used to elucidate the metabolic profiles of TCM preparations or Chinese patent medicines in vivo and provide critical data for rational drug use.

4.
Chinese Journal of Contemporary Pediatrics ; (12): 671-676, 2021.
Article in Chinese | WPRIM | ID: wpr-888464

ABSTRACT

OBJECTIVE@#To study the efficacy and safety of lactase additive in improving lactose intolerance in preterm infants.@*METHODS@#A total of 60 preterm infants with lactose intolerance who were admitted to the Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine from January 2018 to December 2019 were randomly divided into a lactase treatment group and a control group, with 30 infants in each group. The infants in the lactase treatment group were given 4 drops of lactase additive (180 mg) added into preterm formula or breast milk, and those in the control group were given placebo, oral administration of probiotics (live combined @*RESULTS@#Finally 29 infants in the lactase treatment group and 26 infants in the control group completed the trial. At the end of the first week after intervention, compared with the control group, the lactase treatment group had significantly lower frequency of daily milk vomiting and gastric retention amount (@*CONCLUSIONS@#Lactase additive can safely and effectively improve the clinical symptoms caused by lactose intolerance in preterm infants.


Subject(s)
Female , Humans , Infant , Infant, Newborn , China , Infant, Premature , Lactase , Lactose , Lactose Intolerance/drug therapy , Prospective Studies
5.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 791-800, 2018.
Article in English | WPRIM | ID: wpr-812349

ABSTRACT

Shenshao Tablet (SST), prepared from Paeoniae Radix Alba (PRA) and total ginsenoside of Ginseng Stems and Leaves (GSL), is a traditional Chinese medicine (TCM) preparation prescribed to treat coronary heart disease. However, its chemical composition and the components that can migrate into blood potentially exerting the therapeutic effects have rarely been elucidated. We developed an HPLC/DAD/ESI-MS approach aiming to comprehensively profile and identify both the chemical components of SST and its absorbed ingredients (and metabolites) in rat plasma and urine. Chromatographic separation was performed on an Agilent Eclipse XDB C column using acetonitrile/0.1% formic acid as the mobile phase. MS detection was conducted in both negative and positive ESI modes to yield more structure information. Comparison with reference compounds (t, MS), interpretation of the fragmentation pathways, and searching of in-house database, were utilized for more reliable structure elucidation. A total of 82 components, including 21 monoterpene glycosides, four galloyl glucoses, two phenols from PRA, and 55 ginsenosides from GSL, were identified or tentatively characterized from the 70% ethanolic extract of SST. Amongst them, seven and 24 prototype compounds could be detectable in the plasma and urine samples, respectively, after oral administration of an SST extract (4 g·kg) in rats. No metabolites were observed in the rat samples. The findings of this work first unveiled the chemical complexity of SST and its absorbed components, which would be beneficial to understanding the therapeutic basis and quality control of SST.


Subject(s)
Animals , Male , Rats , Chromatography, High Pressure Liquid , Methods , Drugs, Chinese Herbal , Chemistry , Pharmacokinetics , Rats, Sprague-Dawley , Spectrometry, Mass, Electrospray Ionization , Methods , Tablets , Chemistry
6.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 791-800, 2018.
Article in English | WPRIM | ID: wpr-773560

ABSTRACT

Shenshao Tablet (SST), prepared from Paeoniae Radix Alba (PRA) and total ginsenoside of Ginseng Stems and Leaves (GSL), is a traditional Chinese medicine (TCM) preparation prescribed to treat coronary heart disease. However, its chemical composition and the components that can migrate into blood potentially exerting the therapeutic effects have rarely been elucidated. We developed an HPLC/DAD/ESI-MS approach aiming to comprehensively profile and identify both the chemical components of SST and its absorbed ingredients (and metabolites) in rat plasma and urine. Chromatographic separation was performed on an Agilent Eclipse XDB C column using acetonitrile/0.1% formic acid as the mobile phase. MS detection was conducted in both negative and positive ESI modes to yield more structure information. Comparison with reference compounds (t, MS), interpretation of the fragmentation pathways, and searching of in-house database, were utilized for more reliable structure elucidation. A total of 82 components, including 21 monoterpene glycosides, four galloyl glucoses, two phenols from PRA, and 55 ginsenosides from GSL, were identified or tentatively characterized from the 70% ethanolic extract of SST. Amongst them, seven and 24 prototype compounds could be detectable in the plasma and urine samples, respectively, after oral administration of an SST extract (4 g·kg) in rats. No metabolites were observed in the rat samples. The findings of this work first unveiled the chemical complexity of SST and its absorbed components, which would be beneficial to understanding the therapeutic basis and quality control of SST.


Subject(s)
Animals , Male , Rats , Chromatography, High Pressure Liquid , Methods , Drugs, Chinese Herbal , Chemistry , Pharmacokinetics , Rats, Sprague-Dawley , Spectrometry, Mass, Electrospray Ionization , Methods , Tablets , Chemistry
7.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 954-960, 2016.
Article in English | WPRIM | ID: wpr-812535

ABSTRACT

Polysaccharides from numerous traditional Chinese medicines have been proven as the bioactive ingredients and are hence used as the quality control markers. However, the assessment criteria always show a poor specificity, due to the lack of systematic comparison among the analogous herbs. In the present study, two similar materials, namely sea-tangle and sargassum, were selected as the model herbs to develop more specific methods for quality control. Two well-established methods, determination of the total polysaccharides content and monosaccharides composition analysis, were both employed. Based upon the quantitative results, the evaluation criteria of the polysaccharides contents of not less than 2.0% and 1.7% were proposed for sea-tangle and sargassum, respectively. Nine identical monosaccharide derivatives appeared on the HPLC chromatograms of the hydrolysis and derivatized solutions of the two drugs. Principal component analysis and orthogonal partial least squares discriminant analysis using the peak areas of monosaccharides derivatives as the variables were performed, and the results indicated that mannuronic acid and xylose with the opposite concentrations in the two drugs were the differential components. A discriminative criterion using the peak area ratio of these two monosaccharides derivatives was proposed for the qualitative identification. In conclusion, a more specific and quantitative quality control method was developed for sea-tangle and sargassum.


Subject(s)
Chromatography, High Pressure Liquid , Methods , Drugs, Chinese Herbal , Chemistry , Laminaria , Chemistry , Plant Extracts , Chemistry , Polysaccharides , Chemistry , Quality Control , Sargassum , Chemistry , Seaweed , Chemistry
8.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 867-872, 2015.
Article in English | WPRIM | ID: wpr-812470

ABSTRACT

The present study was designed to systematically investigate the ESI-MS(n) behavior of a complex 3, 7-O-glycosyl flavonol, kaempferol 3-O-α-L-[2,3-di-O-β-D-(6-E-p-coumaroyl)glucopyranosyl]-rhamnopyranosyl-7-O-α-L-rhamnopyranoside (KO) isolated from Epimedium wushanense, and to address the elimination priority among different glycosylation sites and different sugars/substituents. The direct-infusion ESI-MS(n) experiment of KO was performed on a hybrid LTQ-Orbitrap Velos Pro mass spectrometer in both negative and positive ion modes by three different fragmentation mechanisms (CID, HCD, and PQD). The CID, HCD, and PQD analyses of KO exhibited remarkable discrimination in respect of the scan range, richness, and distribution of product ions through the entire spectra. KO experienced different fragmentation pathways between two ionization modes: the negative mode CID of KO eliminated the glycosyl portions (priority: 7-sugar > 3-substituent and terminal substituents > inner sugar) and produced aglycone product ions at m/z 284.03/285.04; however, abundant sodium-adduct B(3)2 together with subsequent (i,j)X(3)0 cleavages were found characteristic for the positive mode CID-MS(n). The fragmentation pathways by CID for KO were proposed by analyzing the high accuracy ESI-MS(n) data. Complementary structural information of KO regarding the aglycone and glycosyl portions was obtained by analyzing the ESI-MS(n) data in both ionization modes. In conclusion, the LTQ-Orbitrap method facilitates highly reliable qualitative analysis of bioactive flavonoids with three alternative fragmentation modes.


Subject(s)
Epimedium , Chemistry , Flavonols , Glycosides , Glycosylation , Herbal Medicine , Plant Extracts , Chemistry , Spectrometry, Mass, Electrospray Ionization , Methods , Tandem Mass Spectrometry , Methods
9.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 241-250, 2014.
Article in English | WPRIM | ID: wpr-812269

ABSTRACT

Over the past 30 years, China has significantly improved the drug development environment by establishing a series of policies for the regulation of new drug approval. The regulatory system for new drug evaluation and registration in China was gradually developed in accordance with international standards. The approval and registration of TCM in China became as strict as those of chemical drugs and biological products. In this review, TCM-based new drug discovery and development are introduced according to the TCM classification of nine categories.


Subject(s)
China , Drug Discovery , Reference Standards , Drugs, Chinese Herbal , Reference Standards , Medicine, Chinese Traditional , Reference Standards
10.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 721-729, 2014.
Article in English | WPRIM | ID: wpr-812208

ABSTRACT

Oplopanax elatus (Nakai) Nakai, a member of the ancient angiosperm plant family Araliaceae, is used for the treatment of different disorders in the medicine systems of China, Russia, and Korea, and was designated in Russia as a classical adaptogen. Despite extensive studies of classical adaptogens, there are comparatively few reports concerning the chemical composition and pharmacological effects of O. elatus in English. The plant is a potential source of saponins, flavonoids, anthraquinones, terpenes, and other active compounds. Experimental studies and clinical applications have indicated that O. elatus possesses a number of pharmacological activities, including adaptogenic, anti-convulsant, anti-diabetic, anti-fungal, anti-inflammatory, anti-oxidant, blood pressure modulating, and reproductive function effects. In this review, the chemistry, safety, and therapeutic potential of O. elatus are summarized and highlighted to encourage the further development of this plant.


Subject(s)
Animals , Humans , Medicine, Traditional , Oplopanax , Chemistry , Phytotherapy , Plant Extracts , Chemistry , Pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL